首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   29篇
  国内免费   1篇
  2023年   4篇
  2022年   7篇
  2021年   16篇
  2020年   13篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   21篇
  2015年   7篇
  2014年   18篇
  2013年   29篇
  2012年   6篇
  2011年   16篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   9篇
  1998年   7篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
101.
Chronic fatigue syndrome (CFS) is a significant public health problem of unknown etiology, the pathophysiology has not been elucidated, and there are no characteristic physical signs or laboratory abnormalities. Some studies have indicated an association of CFS with deregulation of immune functions and hypothalamic-pituitary-adrenal (HPA) axis activity. In this study, we examined the association of sequence variations in the glucocorticoid receptor gene (NR3C1) with CFS because NR3C1 is a major effector of the HPA axis. There were 137 study participants (40 with CFS, 55 with insufficient symptoms or fatigue, termed as ISF, and 42 non-fatigued controls) who were clinically evaluated and identified from the general population of Wichita, KS. Nine single nucleotide polymorphisms (SNPs) in NR3C1 were tested for association of polymorphisms and haplotypes with CFS. We observed an association of multiple SNPs with chronic fatigue compared to non-fatigued (NF) subjects (P < 0.05) and found similar associations with quantitative assessments of functional impairment (by the SF-36), with fatigue (by the Multidimensional Fatigue Inventory) and with symptoms (assessed by the Centers for Disease Control Symptom Inventory). Subjects homozygous for the major allele of all associated SNPs were at increased risk for CFS with odds ratios ranging from 2.61 (CI 1.05-6.45) to 3.00 (CI 1.12-8.05). Five SNPs, covering a region of approximately 80 kb, demonstrated high linkage disequilibrium (LD) in CFS, but LD gradually declined in ISF to NF subjects. Furthermore, haplotype analysis of the region in LD identified two associated haplotypes with opposite alleles: one protective and the other conferring risk of CFS. These results demonstrate NR3C1 as a potential mediator of chronic fatigue, and implicate variations in the 5' region of NR3C1 as a possible mechanism through which the alterations in HPA axis regulation and behavioural characteristics of CFS may manifest.  相似文献   
102.
We have previously demonstrated that fatigue at different locations impacts joint angles, angular variability, and coordination variability differently. However, the neuromuscular control aspects underlying these kinematic changes have never been demonstrated. Seventeen young adults (8 males) were recruited. Electromyographic electrodes were placed on: upper trapezius, pectoralis major, anterior and middle deltoid, biceps and triceps brachii, and left and right erector spinae. Subjects performed the repetitive pointing task (RPT) at 1 Hz for 30 s before and after localized fatigue tasks, which consisted of one shoulder, one elbow and one lower back isometric fatiguing protocols until exhaustion in randomized order. Electromyographic amplitude (RMS), variability (SD) and mean power frequency (MnPF) were calculated for each of the pre-fatigue and post-fatigue RPT trials. There were sex × fatigue location interaction effects on upper trapezius RMS (p = 0.038) with males’ values increasing the most after shoulder fatigue. Females’ triceps brachii RMS was greater compared to males after shoulder, elbow, and trunk fatigue (p = 0.003, p = 0.001 and p = 0.007 respectively). There were sex × fatigue location effects on left erector spinae MnPF (p = 0.011) with males and females’ values decreasing the most after trunk fatigue, but more so in males. Results demonstrate that males and females compensate differently during a repetitive pointing task when their elbows, shoulders and trunks are locally fatigued, which could have implications on sex-specific workplace injury risks. See Table 1 for acronyms.  相似文献   
103.
Chronic fatigue is a debilitating disorder with widespread consequences, but effective treatment strategies are lacking. Novel genetic mouse models of fatigue may prove invaluable for studying its underlying physiological mechanisms and for testing treatments and interventions. In a screen of voluntary wheel‐running behavior in N‐ethyl‐N‐nitrosourea mutagenized C57BL/6J mice, we discovered two lines with low body weights and aberrant wheel‐running patterns suggestive of a fatigue phenotype. Affected progeny from these lines had lower daily activity levels and exhibited low amplitude circadian rhythm alterations. Their aberrant behavior was characterized by frequent interruptions and periods of inactivity throughout the dark phase of the light‐dark cycle and increased levels of activity during the rest or light phase. Expression of the behavioral phenotypes in offspring of strategic crosses was consistent with a recessive inheritance pattern. Mapping of phenotypic abnormalities showed linkage with a single locus on chromosome 1, and whole exome sequencing identified a single point mutation in the Slc2a4 gene encoding the GLUT4 insulin‐responsive glucose transporter. The single nucleotide change (A‐T, which we named “twiggy”) was in the distal end of exon 10 and resulted in a premature stop (Y440*). Additional metabolic phenotyping confirmed that these mice recapitulate phenotypes found in GLUT4 knockout mice. However, to the best of our knowledge, this is the first time a mutation in this gene has been shown to result in extensive changes in general behavioral patterns. These findings suggest that GLUT4 may be involved in circadian behavioral abnormalities and could provide insights into fatigue in humans.  相似文献   
104.
We investigated the respective effects of the acute supplementation of valine, leucine, and isoleucine on metabolism-related markers by administering a swimming exercise test to rats. As a behavioral analysis, we evaluated the effect of valine and that of leucine on spontaneous activity after exercise. Acute supplementation of valine before exercise significantly suppressed the depression of the liver glycogen and the blood glucose after exercise, whereas leucine decreased the blood glucose and isoleucine had no effect. Valine or leucine supplementation significantly decreased the plasma corticosterone level after exercise, while isoleucine had no effect. In the behavioral analysis, valine significantly increased the spontaneous activity after exercise, whereas leucine had no effect. These results indicate that in rats, the acute supplementation of valine, not leucine or isoleucine, is effective for maintaining liver glycogen and blood glucose and increasing spontaneous activity after exercise, which could contribute to the reduction of fatigue during exercise.  相似文献   
105.
Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation–refilling and freeze–thaw cycles for a whole year. Cavitation resistance was determined from ‘vulnerability curves’ showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation–refilling cycle, whereas frost fatigue was caused by a freeze–thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12‐month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes.  相似文献   
106.
中枢疲劳既可以作为独立疾病影响人们的日常工作和学习,又可以作为症状出现于多种慢性疾病,其定义和机制国内外说法不尽相同。中枢疲劳是由于中枢神经系统发生退行性或其他不良变化,从而导致躯体、神经、包括心理一系列的疲劳样反应。其机制涉及到中枢神经系统和外周传导系统等多个维度、多个节点的变化,充分把握中枢疲劳的概念本质及潜在生物学机制对其临床防治有着重要理论和实践意义。此外,动物模型作为基础研究的前提和必要工具是中枢疲劳研究过程中又一重要问题。本文在文献整理的基础上,先从定义的角度出发由疲劳引申到中枢疲劳,将现阶段对中枢疲劳的不同概念阐述做一分析,并从机制和动物模型两个方面展开对国外研究进展进行综述。  相似文献   
107.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   
108.
Stepped velocity tests were conducted on juvenile largemouth bronze gudgeon Coreius guichenoti in a swim tunnel respirometer, and oxygen consumption increased with swimming speed to fatigue and then decreased during recovery. Serum levels of total protein, glucose and triglycerides initially decreased, increased at fatigue and then decreased during recovery. Levels stabilized after 120 min, corresponding to the time necessary to recover from fatigue.  相似文献   
109.
ABSTRACT

Neurobehavioural impairment on the first night shift is often greater than on subsequent night shifts due to extended wakefulness. The aim of the study was to determine whether a 1-h afternoon nap prior to the first night shift is sufficient to produce neurobehavioural performance at levels comparable to the second night shift. Twelve male volunteers (mean age 22.9 years) participated in a laboratory protocol that simulated two 12-h night shifts. A nap preceded the first shift and a 7-h daytime sleep was scheduled between shifts. Neurobehavioural performance and subjective sleepiness measured across each night did not significantly differ between first and second shifts.  相似文献   
110.
Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号